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Abstract

An instrumental variables (IV) identi�cation strategy that exploits statutory class

size caps shows signi�cant achievement gains in smaller classes in Italian primary schools.

Gains from small classes are driven mainly by schools in Southern Italy, suggesting a

substantial return to class size reductions for residents of the Mezzogiorno. In addition

to high unemployment and other social problems, however, the Mezzogiorno is distin-

guished by pervasive manipulation of standardized test scores, a �nding revealed in a

natural experiment that randomly assigned school monitors. IV estimates also show

that small classes increase score manipulation. Estimates of a causal model for achieve-

ment with two endogenous variables, class size and score manipulation, suggest that

the e�ects of class size on measured achievement are driven entirely by the relationship

between class size and manipulation. Dishonest scoring appears to be a consequence

of teacher shirking more than teacher cheating. These �ndings show how consequential

score manipulation can arise even in assessment systems with few NCLB-style account-

ability concerns.
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1 Introduction

School improvement e�orts often focus on inputs to education production, the most important

of which is sta�ng ratios. Parents, teachers, and policy makers look to small classes to boost

learning. The question of whether changes in class size have a causal e�ect on achievement

remains controversial, however. Regression estimates often show little gain to class size re-

ductions, with students in larger classes sometimes appearing to do better (Hanushek, 1995).

At the same time, a large randomized study, the Tennessee STAR experiment, generated

evidence of substantial learning gains in smaller classes (Krueger, 1999). An investigation

of longer-term e�ects of the STAR experiment also shows increases in college attendance for

treated students (Chetty et al., 2011).

Standardized tests provide the yardstick by which school quality is most often assessed

and compared. As testing regimes have proliferated, however, so have concerns about the

reliability and �delity of assessment results (Neal, 2013, lays out the issues in this context).

In an early empirical contribution, Jacob and Levitt (2003) documented substantial cheat-

ing in Chicago public schools, while a recent system-wide cheating scandal in Atlanta now

threatens to send large numbers of administrators to jail (Severson, 2011). Of course, stu-

dents may cheat as well, especially on tests with other consequences for them. In many cases,

however, the behavior of sta� who administer and, in some cases, grade assessments is of

primary concern. For example, Dee et al. (2011) show that scores on New York's Regents

exams are often manipulated by the school sta� who grade them. In public school systems

with weak employee performance standards, such as the Italian public school system studied

here, �delity of school sta� to test administration protocols and grading standards may be

especially weak.1

Our investigation of education production in Italy begins by applying the quasi-experimental

research design introduced by Angrist and Lavy (1999). This design exploits variation in class

size that originates in rules stipulating a class size cuto�. In Israel, with a cuto� of 40, we

1De Paola et al. (2014) estimate the e�ects of workplace accountability on productivity in the Italian
public sector. Ichino and Tabellini (2014) discuss possible bene�ts from organizational reform and increased
choice in Italian public schools.
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expect to see a single class of 40 in a grade cohort of 40, while with enrollment of 41, the

cohort is split into two much smaller classes. Angrist and Lavy called this �Maimonides'

Rule,� after the prominent medieval scholar Moses Maimonides, who identi�ed a similar rule

in the Talmud. Maimonides-style estimates of the e�ects of class size on achievement for the

population of Italian second and �fth graders, most of whom attend much smaller classes

than those seen in Israel, suggest a statistically signi�cant but modest return to decreases

in class size. Importantly, however, our estimated returns to class reductions are at least

3 times larger in data from Southern Italy than for the rest of the country. Estimates for

Northern and Central Italy are small and only marginally signi�cantly di�erent from zero.

Modern Italy is characterized by a sharp North-South divide along many dimensions, a

fact that motivates our investigation of regional class size e�ects. The South, known as the

Mezzogiorno, is distinguished by persistently higher unemployment, lower per-capita income,

higher crime rates, and lower educational attainment than are characteristic of other Italian

regions.2 The Mezzogiorno also lags the rest of Italy in �nancial development (Guiso et al.,

2004), political accountability (Nannicini et al., 2013), and workplace productivity (Ichino

and Maggi, 2000). Italy's North-South divide, which is larger and more persistent than

di�erences seen across America's Mason-Dixon line, has been linked to cultural di�erences

and di�erences in residents' view of the role of government (Putnam et al., 1993).

Against a backdrop of relative under-development, the Mezzogiorno is also distinguished

by widespread manipulation on the standardized tests given in Italian primary schools. This

can be seen in Figure 1, which reproduces provincial estimates of score manipulation from

the Italian Instituto Nazionale per la Valutazione del Sistema dell'Istruzione (INVALSI), a

government agency charged with educational assessment. Classes in which scores are likely to

have been manipulated are identi�ed through a statistical model that looks for surprisingly

high average scores, low within-class variability, and implausible missing data patterns.3

Measured in this way, about 5 percent of scores are compromised, much as reported for

Chicago elementary schools by Jacob and Levitt (2003). In Southern Italy, however, the

2The Mezzogiorno consists of the administrative regions of Basilicata, Campania, Calabria, Puglia,
Abruzzo, Molise, and the islands of Sicily and Sardinia. Italy's 20 Administrative regions are further di-
vided into over 100 provinces.

3The INVALSI testing program is described below and in INVALSI (2010). The INVALSI score manip-
ulation variable identi�es classes with substantially anomalous score distributions, imputing a probability of
manipulation for each (see Quintano et al., 2009). Figure 1 uses this variable for the 2009-11 scores of second
and �fth graders.
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proportion of compromised exams averages about 14 percent (see Table 1) and reaches 25

percent in some provinces. Further evidence on score manipulation comes from Bertoni et

al. (2013), who analyze data generated by the random assignment of school monitors. This

analysis also uncovers evidence of a substantial regional gradient in score manipulation.

We argue here that score manipulation in Italian primary schools re�ects teacher behav-

ior and that teachers' perceived cost of dishonest score reporting increases with class size

(institutional forces that link class size with score manipulation are detailed below). A jux-

taposition of regional patterns in the causal e�ects of class size on achievement and the causal

e�ects of class size on score manipulation uncovers striking parallels in the two empirical re-

lationships. This parallelism leads us to model achievement as a function of two endogenous

variables, class size and score manipulation. The model is identi�ed by a combination of

Maimonides' Rule and randomly assigned school monitors. The resulting estimates suggest

that the relationship between class size and INVALSI test scores is explained entirely by

score manipulation.

After showing that putative class size e�ects come solely from score manipulation, we turn

to the nature and motivation for manipulation, arguing �rst that manipulation re�ects the

behavior of teachers and not of students. We then lay out a model that distinguishes two sorts

of moral hazard in teacher behavior. The �rst - dishonesty or conventional cheating - arises in

part from the high stakes accountability pressure that appears to induce score manipulation

of various kinds in many American schools. The second is moral hazard in teacher grading

e�ort, in other words, shirking. An item level analysis of test score di�erentials across

regions suggests that, in Italy and especially in the South, shirking is more important than

conventional cheating.

Why is the fact that score manipulation explains class size e�ects in the Mezzogiorno of

general interest? The Maimonides' Rule research design is motivated by an e�ort to quantify

causal class size e�ects. This design is not guaranteed to work; Urquiola and Verhoogen (2009)

show how endogenous sorting by students induces selection bias in comparisons across class

size caps in Chilean private schools. By contrast, our analysis uncovers a substantive problem

inherent in analyses of the causal e�ects of class size, regardless of research design. We show

that even where the evidence that class size a�ects test scores is uncompromised, this need

not signal increased learning in smaller classes. Our �ndings also provide evidence of moral
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hazard in a system with weak incentives. Italian teachers work in a highly regulated public

sector, with virtually no risk of termination, and are subject to a pay and promotion structure

that's largely independent of performance. In contrast with the unintended consequences of

test-based accountability regimes, the manipulation uncovered here arises because worker

performance standards are weak. It seems fair to say that Italian moral hazard arises from

a lack of accountability rather than an over-abundance of it. Finally, concerns with teacher

shirking are far from unique to Italy. Clotfelter et al. (2009) discusses distributional and

other consequences of American teacher absenteeism, while teacher absenteeism and other

forms of shirking are a perennial concern in developing countries (see Banerjee and Du�o,

2006 and Chaudhury et al., 2006).

The rest of the paper is organized as follows. The next section presents institutional back-

ground on Italian schools and tests. Section 3 describes our data and documents the Mai-

monides' Rule �rst stage. Following a brief graphical analysis, Section 4 reports Maimonides-

style estimates of e�ects of class size on achievement and score manipulation. Section 5 uses

the monitoring experiment and Maimonides' Rule to jointly estimated class size and manip-

ulation e�ects. This section also reviews possible threats to validity in our research design.

Finally, Section 6 explains how and why manipulation takes place.

2 Background

Italian Schools and Tests

Primary and Secondary schooling in Italy are compulsory from ages 6 to 16, with three stages:

5 years of elementary school (scuola elementare), lower secondary school covering grades 6-8

(scuola media), and high school (scuola superiore), which runs for 3-5 years. Schools are

organized into single- or multi-unit institutions, much as a single campus might house more

than one school in American public systems. Teachers are paid by seniority, without regard

to quali�cations, performance, or conduct.

Families apply for school admission in February, well before the beginning of the new

academic year in September. Parents or legal guardians typically apply to a school in their

province, located near their home. In (rare) cases of over-subscription, distance usually

determines who has a �rst claim on seats. Rejected applicants contact other schools, mostly
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nearby. School principals group students into classes and assign teachers over the summer,

but parents learn about class composition only in September, shortly before school starts.

At this point, parents who are unhappy with a teacher or classroom assignment are likely to

�nd it di�cult to change schools.

Italian schools have long used matriculation exams for tracking and placement in the

transition from elementary to middle school and throughout high school, but standardized

testing for evaluation purposes is a recent development. In 2008, INVALSI piloted volun-

tary assessments in elementary school; in 2009 these became compulsory for all schools and

students. INVALSI assessments cover mathematics and Italian language skills in a national

administration lasting two days in the Spring.4 Tests are proctored by local administrators

and teachers. Proctors and other teachers are expected to copy students' original responses

onto machine-readable answer sheets (called scheda risposta), which are then sent to IN-

VALSI. The transcription process is not entirely mechanical: some questions require teachers

to interpret a student's original response as being correct, incorrect, or missing, in e�ect, a

form of grading. Sample test items and a score sheet are included here in a brief appendix.

This transcription procedure opens the door to score manipulation, as does the fact that

INVALSI test administrations are typically proctored by teachers.5

Related work

Maimonides-style empirical strategies have been used to identify class size e�ects in many

countries, including the US (Hoxby, 2000), France (Piketty, 2004 and Gary-Bobo and Mahjoub,

2006), Norway (Bonesronning, 2003 and Leuven et al., 2008) and the Netherlands (Dobbel-

steen et al., 2002). On balance these results point to modest returns to size reductions,

though mostly more modest than found by Angrist and Lavy (1999) for Israel. A natural

explanation for the relatively large Israeli �ndings is the unusually large classes characteristic

of Israeli elementary schools. In line with this view, Woessmann (2005) �nds a weak associa-

4INVALSI reports school and class average scores to schools but not students. School leaders may
choose to release this information to the public. Individual test scores are not reported or released. See
http://www.invalsi.it for additional background.

5Teacher proctoring and local grading is a feature shared with other European assessments. For ex-
ample, local teachers mark the UK's Key Stage 1 assessments (given in year 2, usually at age 7). Key
Stage 2 assessments given at the end of elementary school (usually at age 11) are locally proctored
with unannounced external monitoring and external marking (grading). See documents and links at
http://www.education.gov.uk/sta/assessment.
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tion between class size and achievement in a cross-country panel covering Western European

school systems in which classes tend to be small.

The returns to class size in Italy have received little attention from researchers to date, in

large part because test score data have only recently become available. Among the few Italian

studies we've seen, Bratti et al. (2007) report regression estimates showing an insigni�cant

class size e�ect. In an aggregate analysis, Brunello and Checchi (2005) look at the relation-

ship between sta�ng ratios and educational attainment for cohorts born before 1970; they

�nd that higher pupil-teacher ratio at the regional level are associated with higher average

schooling attainment. We haven't seen other quantitative explorations of Italian class size,

though Ballatore et al. (2013) use a related identi�cation strategy to estimate the e�ects of

immigrants in the classroom on native achievement.

Jacob and Levitt (2003) and Dee et al. (2011) quantify teacher cheating on standardized

assessments in Chicago and New York. The (natural) experiment used here to identify the

e�ects of Italian score manipulation and class size jointly was �rst analyzed by Bertoni et

al. (2013). Our analysis of this experiment looks at monitoring e�ects by region, while

also adjusting for features of the intervention sampling scheme not fully accounted for in

earlier work. The resulting estimates suggest that the presence of classroom monitors sharply

reduces score manipulation, and that manipulation boosts measured scores dramatically.

Both of these e�ects are much larger in Southern Italy. Elsewhere in Italy, manipulation is

relatively rare.

Scholars have documented a range of economic and behavioral di�erences across Italian

regions. Southern Italy is characterized by low levels of social capital (Guiso et al., 2004;

Guiso et al., 2010) and more widespread opportunistic or anti-social behavior (Ichino and

Maggi, 2000; Ichino and Ichino, 1997). Di�erences along these dimensions have been used

to explain persistent regional di�erentials in economic outcomes (Costantini and Lupi, 2006)

and di�erences in the quality of local institutions (Putnam et al., 1993). Finally, as noted in

the introduction, our work connects with research on teacher shirking around the world.
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3 Data and First Stage

Data and descriptive statistics

The standardized test score data used in this study come from INVALSI's testing program

in Italian elementary schools in the 2009/10, 2010/11, and 2011/12 school years. Raw scores

indicate the number of correct answers; for the purposes of regression and two-stage least

squares (2SLS) estimation, we standardized these by subject, year of survey, and grade to

have zero mean and unit variance. Data on test scores were matched to administrative and

survey information describing institutions, schools, classes, and students. Class size can be

measured by administrative enrollment counts at the beginning of the school year as well

as the number of test-takers (we use the former). Student data include gender, citizenship,

and information on parents' employment status and educational background. These data are

collected as part of test administration and supposed to be provided by school sta� when

scores are submitted. Fewer than 10 percent of Italian primary and secondary school students

who attend private schools are omitted from this study.

Our statistical analysis focuses on class-level averages since this is the aggregation level

at which the regressor of interest varies. The empirical analysis is restricted to classes with

more than the minimum number of students set by law (10 before 2010 and 15 from 2011).

This selection rule eliminates classes in the least populated areas of the country, mostly

mountainous areas and small islands. We also drop schools enrolling more than 160 students

in a grade, as these are above the threshold where Maimonides' Rule is likely to matter

(this size cuto� trims classes above the 99th percentile of the enrollment-weighted class size

distribution).

The resulting matched �le includes about 70,000 classes in each of the two grades covered

by our three-year window. Table 1 shows descriptive statistics for the estimation sample,

separately by grade. Statistics are reported at the class level in Panel A, at the school level

in Panel B, and at the institution level in Panel C. Class size averages around 20 in both

grades, and is slightly lower in the South. The score means reported in Panel A give the class

average percent correct. Scores are higher in language than in math and higher in grade 5

than in grade 2. The table also shows averages for an indicator of score manipulation variable

that we've constructed (Section 3, below, explains how this was done). Manipulation rates
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are higher in the South and in math.

Maimonides in Italy

Our identi�cation strategy exploits minimum and maximum class sizes for Italy (these rules

are a consequence of a regulation known as Decreto Ministeriale 331/98 ). Until the 2008/09

school year, primary school classes were subject to a minimum size of 10 and capped at 25.

Grade enrollment beyond 25 or a multiple thereof usually prompted the addition of a class.

The rule allows exceptions, however. Principals can reduce the size of classes attended by

one or more disabled students, and schools in mountainous or remote areas are allowed to

open classes with fewer than 10 students. Finally, the law allows a 10% deviations from

the maximum in either direction (that is, the Ministry of Education will usually fund an

additional class when enrollment exceeds 22 and typically requires a new class when average

enrollment would otherwise exceed 28). A 2009/10 reform increased the nominal maximum

to 27, with a minimum size of 15, again with a tolerance of 10% (promulgated through

Decreto del Presidente della Repubblica 81/2009 ). This reform was rolled out one grade per

year, starting with grade 1. In our data, second graders in 2009/10 and �fth graders in any

year are subject to the old rule, while second graders in 2010/11 and 2011/12 are subject to

the new rule.

Ignoring discretionary deviations near cuto�s, Maimonides' Rule predicts class size to be

a non-linear and discontinuous function of enrollment. Writing figkt for the predicted size of

class i in grade g at school k in year t, we have:

figkt =
rgkt

[int ((rgkt − 1) /cgt) + 1]
, (1)

where rgkt is beginning-of-the-year grade enrollment at school k, cgt is the cap in e�ect that

year (25 or 27) in grade g, and int(x ) is the largest integer smaller than or equal to x . Figure

2 and Figure 3 plot average class size and figkt against enrollment in grade, separately for

pre- and post-reform periods. Plotted points show the average actual class size at each value

of enrollment. Actual class size follows predicted class size reasonably closely for enrollments

below about 75, especially in the pre-reform period. Theoretical sharp corners in the class

size/enrollment relationship are rounded by the soft nature of the rule. Many classes are

split before reaching the theoretical maximum of 25. Earlier-than-mandated splits occur
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more often as enrollment increases. In the post-reform period, class size tracks the rule

generated by the new cap of 27 poorly once enrollment exceeds about 70.

Measuring Manipulation

The score manipulation variable used here is a function of extreme values, the within-class

average and standard deviation of test scores, the number of missing items, and a Her�ndahl

index of the share of students with similar response patterns. These indicators are used as in-

puts for a cluster analysis that �ags as suspicious classes with abnormally high performance,

an unusually small dispersion of scores, an unusually low proportion of missing items, and

high concentration in response patterns. This procedure yields class-level indicators of com-

promised scores, separately for math and language. Our manipulation indicator is similar

to that used by Quintano et al. (2009) and in INVALSI publications (e.g., INVALSI, 2010).

The INVALSI version generates a continuous class-level probability of manipulation. The

procedure used here generates a dummy variable indicating classes where score manipulation

seems likely.6 Methods and formulas used to classify score manipulation are detailed further

in the appendix.

4 Class Size E�ects: Achievement and Manipulation

Graphical Analysis

We begin with plots that capture class size e�ects near enrollment cuto�s. The �rst in this

sequence, Figure 4, documents the relationship between cuto�s (multiples of 25 or 27) and

class size. This �gure was constructed from a sample of classes at schools with enrollment

that falls in a [-12,12] window around the �rst four cuto�s shown in Figure 2 and Figure 3.

Enrollment values in each window are centered to be zero at the relevant cuto�. The y-axis

shows average class size conditional on the centered enrollment value shown on the x-axis,

reported as a 3-point moving average. Figure 4 also plots �tted values generated by local

linear regressions (LLR) �ts to class-level data. In this context, the LLR smoother uses data

6Our procedure also follows Jacob and Levitt (2003) in inferring score manipulation from patterns of
answers within and across tests in a classroom. Jacob and Levitt (2003) also compare test scores over time,
looking for anomalous changes. Values in the upper tail of the Jacob-Levitt suspicious answer index are
highly predictive of their cheating variable.
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on one side of the cuto� only, smoothed with an edge kernel and Imbens and Kalyanaraman

(2012) bandwidth.7

In view of the 2-3 student tolerance around the cuto� for the addition of a class, enrollment

within two points of the cuto� is excluded from the local linear �t. As a result of this

tolerance, class size can be expected to decline at enrollment values shortly before the cuto�

and to continue to decline thereafter. Consistent with this expectation, the �gure shows

a clear drop at the cuto�, with the sharpness of the break moderated by values near the

cuto�. Class size is minimized at about 3-5 students to the right of the cuto� instead of

immediately after, as we would expect were Maimonides Rule to be tightly enforced. The

parametric identi�cation strategy detailed below exploits both the discontinuous variation in

class size generated when enrollment moves across cuto�s and changes in slope as a cohort is

divided into classes more �nely. Looking only at points immediately adjacent to the cuto�,

the change in size generating by moving across a cuto� is on the order of 2-3 students.

In data from the South, math and language scores plotted as a function of enrollment

values near Maimonides cuto�s show a jump that mirrors the drop in size seen at Maimonides

cuto�s, but there is little evidence of such a jump in schools outside the South. This pattern is

documented in Figure 5, which plots math and language scores against enrollment in a format

paralleling that of Figure 4. The reduced-form achievement drop for schools in Southern Italy

is about 0.02 standard deviations (hereafter, σ). Assuming this reduced-form change in test

scores in the neighborhood of Maimonides cuto�s is driven by a causal class size e�ect, the

implied return to a one-student reduction in class size is about 0.01σ in Southern Italy (this

comes from dividing 0.02 by a rough �rst stage of about 2). The absence of a jump in scores

at cuto�s in data from schools elsewhere in the country suggests that outside the South class

size reductions leave scores unchanged.

Score manipulation also varies as a function of enrollment in the neighborhood of class

size cuto�s, with a pattern much like that seen for achievement. This is apparent in Figure 6,

which puts the proportion of classes identi�ed as having compromised scores on the y-axis, in

a format like that used for Figure 4 and Figure 5. Mirroring the pattern of achievement e�ects,

a discontinuity in score manipulation rates emerges most clearly for schools in Southern Italy.

7The �gures here plot residuals from a regression of class size on the controls included in equation (2),
below.
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This pattern suggest the achievement gains generated by class size in Figure 5 may re�ect

the manipulation behavior captured in Figure 6.

Empirical Framework

Figure 5 suggests that variation in class size near Maimonides cuto�s can be used to identify

class size e�ects in a non-parametric fuzzy regression discontinuity (RD) framework. In

what follows, however, we opt for parametric models that exploit variation in enrollment

due to changes in the slope of the relationship between enrollment and class size, as well

as discontinuities. The parametric strategy gains power by combining features of both RD

and regression kink designs, while easily accommodating models with multiple endogenous

variables and covariates.8

Our parametric framework models yigkt, the average outcome score in class i in grade g

at school k in year t, as a polynomial function of the running variable, rgkt, and class size,

sigkt. With quadratic running variable controls, the speci�cation pooling grades and years

can be written:
yigkt = ρ0(t, g) + βsigkt + ρ1rgkt + ρ2r

2
gkt + εigkt, (2)

where ρ0(t, g) is shorthand for a full set of year and grade e�ects. This model also controls

for the demographic variables described in Table 1, as well as the strati�cation variables used

in the monitoring experiment to increase precision in the estimates.9 Standard errors are

clustered by institution, which we reckon to be a conservative strategy in this context.

The instrument used for 2SLS estimation of equation (2) is figkt, as de�ned in equation

(1). To document the sensitivity of �ndings to speci�cation of running variable controls,

we also report results from models that include a full set of cuto�-segment (window) main

e�ects, while allowing the quadratic control function to di�er across segments. We refer to

this as the interacted speci�cation.10 The corresponding OLS estimates for models without

interacted running variable controls are shown as a benchmark.

8Card et al. (2012) discuss nonparametric identi�cation in the regression kink design.
9Control variables include proportion female in the class, the proportion of immigrants, the proportion of

students whose father is a high school graduate, have unemployed mothers, have mothers not in the labor
force, have employed mothers, and dummies for missing values for these variables. Strati�cation controls
consist of total enrollment in grade, region dummies, and the interaction between enrollment and region.

10Pre-reform segments cover the intervals 10-37, 38-62, 63-87, 88-112, 113-137, and 138-159; post-reform
segments cover the intervals 15-40, 41-67, 68-94, 95-121, and 122-159. These segments cover intervals of
width +/- 12 in the pre-reform period and +/-13 in the post-reform period, with modi�cations at the lower
and upper segments to include a few larger and smaller values.
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Parametric Estimates of Class Size E�ects

OLS estimates of equation (2) show a negative correlation between class size and achievement

for schools in the Northern and Central regions, but not in the South (class size e�ects are

scaled for a 10 student change). Larger classes are associated with somewhat higher language

scores in the South while Southern class sizes appear to be unrelated to achievement in math.

These estimates can be seen in columns 1-3 of Table 2.

2SLS estimates using Maimonides' Rule, reported in columns 4-9 of Table 2, suggest that

larger classes reduce achievement in both math and language. The associated �rst stage

estimates, which can be seen in Appendix Table A1, show that predicted class size increases

actual class size with a coe�cient around one-half when regions are pooled, with a �rst

stage e�ect of 0.43 in the South and 0.55 elsewhere. 2SLS estimates for Southern schools,

implying something on the order of a 0.10σ achievement gain for a 10-student reduction, are

2-3 times larger than the corresponding estimates for schools outside the South. The 2SLS

estimates are reasonably precise; only estimates of the interacted speci�cation for language

scores from non-Southern schools fall short of conventional levels of statistical signi�cance.

On balance, the results in Table 2 indicate a substantial achievement payo� to class size

reductions, though the gains here are not as large as those reported by Angrist and Lavy

(1999) for Israel. A substantive explanation for this di�erence in �ndings might be concavity

in the relationship between class size and achievement, combined with Italy's much smaller

average class sizes.

The estimates in Table 3 suggest that the causal e�ect of class size on measured achieve-

ment reported in Table 2 need not re�ect more learning in smaller classes. This table reports

estimates from speci�cations identical to those used to construct the estimates in Table 2,

with the modi�cation that a class-level score manipulation indicator replaces achievement

as an outcome. The 2SLS estimates in columns 4-9 show a large and precisely-estimated

negative e�ect of class size on manipulation rates, with e�ects on the order of 4-6 percentage

points for a 10-student class size increase in the South. Estimates for schools outside the

South also show a negative relationship between class size and score manipulation, though

here the estimated e�ects are much smaller and signi�cantly di�erent from zero in only one

case (language scores from the non-interacted speci�cation). Interestingly, OLS estimates of

e�ect of class size on score manipulation, though smaller in magnitude, re�ect the same neg-
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ative e�ects as 2SLS. This suggests that the relationship between class size and manipulation

may have a mechanical component, less a�ected by the sort of selection bias that a�ects OLS

estimates of the corresponding achievement relation.

5 Models with Two Endogenous Variables

5.1 The Monitoring Experiment

The estimates in Table 3 treat score manipulation as an outcome variable in a notional class

size experiment. We're also interested in score manipulation as a causal channel in a mul-

tivariate model that simultaneously links both class size and manipulation with measured

achievement. We therefore turn to INVALSI's monitoring intervention as an independent

source of quasi-experimental variation in score manipulation, unrelated to Maimonides' Rule.

In an e�ort to increase test reliability, INVALSI randomly selects institutions to be observed

by an external monitor. Institutions are sampled for monitoring with a probability propor-

tional to grade enrollment in the year of the test. Sampling is also strati�ed by regions.

Within sampled institutions, classroom monitors are meant to be randomly assigned to one

or two classes per grade, though randomness of within-institution monitoring appears to have

been compromised in practice.

Regional education o�ces select monitors from a pool of mainly retired teachers and

principals who've not worked in the towns or at the schools they are assigned to monitor for

at least two years. Monitors supervise test administration and encourage compliance with

INVALSI testing standards. Importantly, monitors also supervise score sheet transcription,

a clerical task (described further, below) that's meant to be completed by the end of the test

day. Tests without monitors are proctored by local school sta� (though the math teacher for

a given grade is not supposed to be assigned to proctor that grade's test and so on). The

e�ect of monitoring on score manipulation in this experiment was �rst reported by INVALSI

(2010). We replicate some of these earlier �ndings, as well as those reported in a related

study by Bertoni et al. (2013), in an analysis that distinguishes between Southern Italy and

the rest of the country.

As a preliminary, Table 4 documents balance across institutions with and without ran-
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domly assigned monitors. This table reports regression-adjusted treatment-control di�erences

from models that control for strata in the monitoring intervention sample design. Speci�cally,

these speci�cations include a full set of region dummies and a linear function of institutional

grade enrollment that varies by regions. Standard errors are clustered by institution. Admin-

istrative variables � generated as a by-product of school administration and INVALSI testing

� are well-balanced across groups, as can be seen in the small and insigni�cant coe�cient

estimates reported in Panel A of the table.11

Demographic data and other information provided by school sta�, such as parental infor-

mation, show evidence of imbalance. This seems likely to re�ect the in�uence of monitoring

on data quality, rather than a problem with the experimental design or implementation. The

hypothesis that monitors induced more careful data reporting by sta� is supported by the

large treatment-control di�erential in missing value rates documented at the bottom of the

table. Among other salutary e�ects, randomly assigned monitors reduce item non-response

by as much as three percentage points, as can be seen in Panel C of Table 4. Monitoring

e�ects on data quality at class size cuto�s are discussed in Section 5.3.

The presence of institutional monitors reduces score manipulation considerably. This

can be seen in the estimated monitoring e�ects in columns 1-3 of Table 5, which suggest

monitoring reduces manipulation rates by about 3 percentage points for Italy, with e�ects

twice as large in the South. These estimates come from models similar to those used to check

covariate balance with a score manipulation indicator replacing covariates as the dependent

variable. Monitoring also reduces language scores by 0.08σ, while the estimated monitoring

e�ect on math scores is about −0.11σ. Here too, e�ects of monitoring are much larger in

the South, ranging from −0.13σ for language to −0.18σ for math, estimates that appear in

column 6 of the table. The large e�ect of monitoring on score manipulation suggests that

the latter re�ects teacher behavior and not that of students: honest teacher-proctors should

have the same deterrent e�ect on student cheaters as external monitors. If anything, teachers

who know their students well should curb student cheating more e�ectively than outsiders.

We also see from Table 3 that increasing class size reduces score manipulation, a �nding at

odds with the idea that students �nd it easier to cheat in large classes.

11Bertoni et al. (2013) mistakenly treated institutions as schools. Their identi�cation strategy also pre-
sumes random assignment of classroom monitors within institutions, but we �nd that monitors are much
more likely to be assigned to large classes.
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The estimates reported in columns 1-3 and 4-6 of Table 5 constitute the �rst stage and

reduced form for a model that uses the assignment of monitors as an instrument for the

e�ects of score manipulation on test scores. Dividing reduced form estimates by the corre-

sponding �rst stage estimates produces second stage manipulation e�ects of about 3σ for the

South, with even larger second stage estimates for the North. These e�ects seem implausibly

large, implying a boost in scores that exceeds the range of the dependent variable in some

cases. It also seems likely, however, that the score manipulation variable used to construct

the corresponding �rst stage e�ects is substantially mismeasured. Because classi�cation er-

ror attenuates �rst stage estimates, the resulting second stage estimates are proportionally

in�ated. This and other implications of missclassi�cation are discussed after reviewing esti-

mation results that simultaneously capture class size and manipulation e�ects on test scores.

5.2 Estimates with Two Endogenous Variables

The estimates in Table 2, Table 3, and Table 5 motivate a causal model in which achievement

depends on class size (sigkt) and score manipulation (migkt), both treated as endogenous

variables to be instrumented. This model can be written:

yigkt = ρ0(t, g) + β1sigkt + β2migkt + ρ1rgkt + ρ2r
2
gkt + ηigkt, (3)

where ρ0(t, g) is again a shorthand for year and grade e�ects. We interpret equation (3)

as describing the average achievement that would be revealed by alternative assignments of

class size, sigkt, in an experiment that holds migkt �xed. This model likewise describes causal

e�ects of changing score manipulation rates in an experiment that holds class size �xed. In

other words, (3) is a model for potential outcomes indexed against two jointly manipulable

treatments.

We estimate equation (3) by 2SLS in a setup that includes the same covariates that

appear in the models used to construct the estimates reported in Table 2. The instrument

list contains Maimonides' Rule (figkt) and a dummy indicating classes at institutions with

randomly assigned monitors, M igkt. The �rst-stage equations associated with these two

instruments can be written:

sigkt = λ10(t, g) + µ11figkt + µ12M igkt + λ11rgkt + λ12r
2
gkt + ξik, (4)
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migkt = λ20(t, g) + µ21figkt + µ22M igkt + λ21rgkt + λ22r
2
gkt + υik, (5)

where λ10(t, g) and λ20(t, g) are shorthand for �rst-stage year and grade e�ects. First stage

estimates, reported in Table 6, show both a monitoring and a Maimonides' Rule e�ect on

score manipulation, both of which are considerably more pronounced in the South. The

Maimonides �rst stage for class size remains at around one-half, while the presence of a

classroom monitor is unrelated to class size. This is consistent with the hypothesis that

monitors are randomly assigned to institutions.

The 2SLS estimates of β2 in equation (3), reported in Table 7, show large e�ects of ma-

nipulation on test scores. At the same time, this table reports small and mostly insigni�cant

estimates of β1, the coe�cient on class size in the multivariate model. In an e�ort to boost

the precision of these estimates, we estimated over-identi�ed models that add four dummies

for values of the running variable that fall within 10% of each cuto�, a speci�cation motivated

by the non-parametric �rst stage captured in Figure 4.12 The most precise of the estimated

zeros reported in Table 7, generated by the over-identi�ed speci�cation for Italy as a whole,

run no larger than 0.022, with an estimated standard error of 0.015 (for a 10 student increase

in class size); these appear in column 4. Its also worth noting that the over-identi�cation

p-values associated with these estimates are far from conventional signi�cance levels.

We also report 2SLS estimates adding an interaction term, sigkt ∗ migkt, to equation

(3), using figkt ∗Migkt and the extra dummy instruments interacted with Migkt as excluded

instruments. This speci�cation is motivated by the idea that class size may matter only

in a low-manipulation subsample, while an additive model like equation (3) may miss this.

There is little evidence for interactions, however: the estimated interaction e�ects, reported

in columns 7-9 of Table 7 are not signi�cantly di�erent from zero.

The most important �ndings in Table 7 are the small and insigni�cant class size e�ects for

the Mezzogiorno, a result that contrasts with the much larger and statistically signi�cant class

size e�ects for the same area reported in Table 2. In column 9 of the latter table, for example,

a 10 student reduction in class size is estimates to boost achievement by 0.10σ or more. The

corresponding multivariate estimates in Table 7 are of the opposite sign, showing that larger

classes increase achievement, though not by very much. The over-identi�ed estimates come

with estimated standard errors ranging from about 0.02 to 0.04, so that the estimated class

12First stage estimates for the over-identi�ed model appear in Appendix Table A2.
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size e�ects in Table 2 fall well outside the estimated con�dence intervals associated with the

multivariate estimates. It seems reasonable, therefore, to interpret the estimated class e�ects

in Table 7 as precise zeros. This in turn aligns with an interpretation of the return to class

size in Italy as due entirely to the causal e�ect of class size on score manipulation, most likely

by teachers.

5.3 Threats to validity

We brie�y consider three possible threats to validity in our research design. An initial concern

comes from the fact that one of the four indicators used to construct the score manipulation

dummy, unusually high average scores, may be connected to the outcome of interest for rea-

sons unrelated to manipulation. We therefore constructed a manipulation variable excluding

this component. RD estimates of the relationship between class size, score manipulation,

and achievement, are largely una�ected by this change. Two other concerns relate to mea-

surement error in score manipulation and potentially endogenous sorting around class size

cuto�s.

Score manipulation with misclassi�cation

The large 2SLS estimates of manipulation e�ects in Table 7 re�ect attenuation bias in �rst

stage estimates if score manipulation is misreported. We show here that as long as misclas-

si�cation rates are independent of the instruments, mismeasurement of manipulation leaves

2SLS estimates of class size e�ects in the multivariate model una�ected. We show this in

the context of a simpli�ed version of the multivariate model, which can be written with a

class subscript as:
yi = ρ0 + β1si + β2m

∗
i + ζi, (6)

where instruments are assumed to be uncorrelated with the error, ζi, as in equation (3).

Here, m∗i is an accurate score manipulation dummy for class i, while mi is observed score

manipulation as before.

Let zi = [fi Mi]
′ denote the vector of instruments. Assuming that classi�cation rates are

independent of the instruments conditional on m∗i , we can write:

mi = (1− π0) + (π0 + π1 − 1)m∗i + ωi, (7)
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where the residual, ωi, is de�ned by:

ωi = mi − E[mi|zi,m∗i ],

and πd, the probability that score manipulation is correctly detected, satis�es:

P [mi = d|zi,m∗i = d] = P [mi = d|m∗i = d] = πd, (8)

for d = 0, 1. Note that E[ziωi] = 0 by de�nition of ωi.

Using (7) to substitute for m∗i , equation (6) can be rewritten:

yi =

[
ρ0 −

β2(1− π0)
π0 + π1 − 1

]
+ β1si +

[
β2

π0 + π1 − 1

]
mi +

[
ζi − β2

ωi

π0 + π1 − 1

]
. (9)

We assume that the πd's are strictly greater than 0.5, so that reported score manipulation is

a better indicator of actual manipulation than a coin toss. This ensures that the coe�cient

on mi in (9) is �nite and has the same sign as β2. The 2SLS estimate of the coe�cient on

reported score manipulation is therefore biased upward, since π0 + π1 − 1 is strictly between

0 and 1 given these assumptions. This implies that estimates of β2 for the North/Centre

region (columns 2, 5 and 8 of Table 7), where score manipulation is lower and therefore

misclassi�cation is higher, are more in�ated than in the South. Most importantly, because

the feasible estimating equation (9) has a residual uncorrelated with the instruments and

the coe�cient on class size is unchanged in this model, misclassi�cation of the sort described

by (8) leaves estimates of the class size coe�cient, β1, unchanged. Similar results for the

consequences of classi�cation error appear in Kane et al. (1999), Mahajan (2006), and Lewbel

(2007), among others, though our work focuses on the consequences for the coe�cient on a

variable subject to error rather than implications for other regressors in the model.13

13We can learn whether 2SLS estimates of the coe�cient on mi, that is, the size of the estimated manipu-
lation e�ects, are plausible by experimenting with data from an area where manipulation rates are low and
assuming that true manipulators earn perfect scores. We use data from Veneto, the region with the lowest
score manipulation rate in Italy, to estimate β2 in this scenario by picking 20% of classes at random and
recoding scores for this group to be 100. The resulting estimates of β2 come out at around 2.25σ. Taking
this as a benchmark, the manipulation e�ects in Table 7 are consistent with values of πj around .8 for Italy
(since 2.25

2×.8−1 = 3.75), though the implied π′js are closer to .65 for math scores outside the South. These
rates seem like reasonable descriptions of the classi�cation process.
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Sorting near cuto�s

The Maimonides research design identi�es causal class size e�ects assuming that, after ad-

justing for secular e�ects of the running variable, predicted class size (figkt) is unrelated to

student or school characteristics. As in other RD-type designs, sorting around cuto�s poses a

potential threat to this assumption. Urquiola and Verhoogen (2009) and Baker and Paserman

(2013) note that discontinuities in student characteristics near Maimonides cuto�s can arise

if parents or school authorities try to shift enrollment to schools where expected class size is

small. In our setting, however, an evaluation of the sorting hypothesis is complicated by the

link between Maimonides' Rule and score manipulation documented in Table 6. The fact that

Maimonides' Rule predicts score manipulation, especially in the South, generates the results

in Table 7. An important channel for the link between Maimonides' Rule and manipulation,

detailed in the next section, is the fact that monitoring rates fall as class sizes increases. If

the behavior driving manipulation also a�ects data quality, a conjecture supported by the

e�ects of monitoring on data quality seen in Table 4, we might expect Maimonides' Rule to

be related to covariates for the same reason that monitoring is related to covariates.

This expectation is borne out by Table 8, which reports estimates of the link between

between Maimonides' Rule and covariates in a format paralleling that of Table 4. These

estimates come from the reduced from speci�cations used to generate the 2SLS estimates

reported in Table 2, after replacing scores with covariates on the left hand side. The pattern

of covariate imbalance in Table 8 mirrors that in Table 4: covariates a�ected by monitoring

are also correlated with Maimonides' Rule, while administrative variables that are unrelated

to monitoring are largely orthogonal to Maimonides' Rule. Tables 4 and 8 also re�ect similar

regional di�erences in the degree of covariate imbalance, with considerably more imbalance in

the South. Additional evidence suggesting that the link between covariates is a data quality

e�ect unrelated to sorting appears in Appendix Table A3. This table shows that the figkt is

largely unrelated to covariates in schools with monitors, where manipulation is considerably

diminished (though not necessarily eliminated, since some classes in monitored institutions

remain unmonitored).
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6 Explaining Manipulation

The fact that classroom monitoring sharply reduces test scores points to teachers as the source

of manipulation and not students. Honest teacher-proctors should have the same deterrent

e�ect as external monitors on cheating students: both are likely to catch cheaters, teachers

even more so if they recognize cheating more readily. External monitoring should therefore

have little e�ect on student cheating unless cheating is accomplished with the collaboration

or at least assent of school sta�. Moreover, it seems likely that any class size e�ect on student

cheating is positive, that is, larger classes should facilitate student cheating. Results in Table

3 showing that score manipulation decreases with class size therefore weigh against student

cheating as well. Finally, because individual scores are never disclosed, its hard to see why

students might want to cheat.

It remains to explain why large classes reduce teacher manipulation rates. An important

institutional factor generating this link is the fact that when enrollment is below 100, monitors

observe a single class, while at institutions with larger grade enrollments they observe at most

two. Consequently, conditional on enrollment, the odds a class is monitored are increasing

in class size.14 In addition, INVALSI sta� report that teachers help their students in many

locally proctored exams; if aid is given to individual students, increasing class size probably

reduces the proportion assisted. Larger classes also make inappropriate teacher aid less

discrete (the fact that external monitoring reduces score manipulation, as shown in Section

5.1, suggests those doing the manipulation see exposure as undesirable).

Score manipulation is almost certainly facilitated by the need for local proctors and teach-

ers to interpret and transcribe students' original answers onto the scheda risposta within a

few days of the test. This task requires transcribers to decide whether answers are correct

or missing. Open items require thought and interpretation, so that transcription becomes

a form of grading. Large classes therefore seem likely to reduce manipulation in the tran-

scription process for two reasons. First, the number of teachers proctoring and transcribing

probably increases in larger classes, possibly limiting the extent of manipulation through peer

monitoring (transcription work is often assigned by allocating a �xed number of exams per

transcriber). Second, some teachers either cheat or simply shirk transcription duties by curb-

14A regression like those used to construct the estimates in Table 8 shows a 10 student class size reduction
reduces monitoring rates within institutions by 3.5 points in the South and 2.8 points elsewhere.
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stoning, that is, copying all or part of an answer key onto the scheda risposta. Curbstoning

of correct answers is probably less accurate in large classes. Of course, transcription accuracy

may fall with class size without regard to cheating. Weighing against a pure accuracy-in-

transcription e�ect, however, is the fact that the relationship between class size and test

scores disappears once manipulation is taken into account. Honest transcribers would ap-

pear to do this work accurately, while shirkers grow careless as the transcription workload

grows.

This discussion focuses on the mechanics of manipulation. We turn next to the question

of motives. The relationship between class size and score manipulation would appear to

arise from behavior related to both proctoring and transcription. These behaviors seem

likely to re�ect two sorts of motives: accountability concerns that lead to inappropriate aid

while proctoring, as well as curbstoning of correct answers in grading and transcription, and

curbstoning as a strategy to minimize transcription or grading e�ort while maintaining high

levels of apparent achievement.

6.1 Why Manipulate? An Item-Level Analysis

We use a model of item-level achievement in an e�ort to discriminate between accountability

and shirking motives for manipulation. To this end, items are characterized by di�culty and

grading e�ort. Let pj be the percent correct on item j in a non-cheating reference group,

honestly transcribed, so 1− pj measures item di�culty. To capture the fact that some items

require more work in transcription, let ej be a indicator for open, high-grading-e�ort items.

Class i's percent correct on item j, yij, can now be written as:

yij = pj + (g(ej)− pj)mij + υij, (10)

where mij is an indicator for manipulation of item j in class i and υij is an error term. In the

absence of manipulation, the expected score is pj. Manipulators score a value, g (ej), that

depends on grading e�ort, implying that the e�ect of manipulation on scores is g(ej)− pj.15

15Dee et al. (2011) similarly distinguish between open response items and others where grading is less
discretionary.
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Accountability Concerns

Manipulators motivated by accountability considerations probably see manipulation as costly

since they care about how they are perceived. A desire to limit exposure and make proctoring

aid e�cient motivates assistance and curbstoning on items where scores are otherwise likely

to be low. In other words, accountability considerations motivate manipulation targeting

di�cult items.

We capture this behavior by modeling manipulation rates and manipulated scores as

follows:
mij = κ0 + κ1pj, g (ej) = γ0, (11)

where κ1 < 0 and γ0 is arguably close to one. Substituting (11) into (10) and rearranging

generates an expression for item-level scores as a function of di�culty and its square:

yij = γ0κ0 + [γ0κ1 + (1− κ0)]pj − κ1p2j + υij. (12)

This equation shows that di�culty-related manipulation induces non-linearity in the relation

between scores and item di�culty, where average scores �atten as di�culty grows, while

without this form of manipulation they would decline.

E�ort-related Shirking

Dishonest or lazy transcribers may be especially likely to copy answers to open items that

require more work to grade. They may also transcribe high-e�ort items less accurately. We

parametrize e�ort-related shirking using:

mij = κ0 + κ1ej g(ej) = γ0 + γ1ej,

where the likelihood of manipulation is assumed to increase with e�ort (κ1 > 0), while

transcription accuracy declines (γ1 < 0). Equation (10) then becomes:

yij = κ0γ0 + (κ0γ1 + κ1γ0 + κ1γ1) ej + (1− κ0)pj − κ1pjej + υij, (13)

so that e�ort-related shirking generates a main e�ect and interaction for grading e�ort in

the item-level conditional mean function for scores. In contrast with (12), equation (13)

describes a linear relationship between item di�culty and scores, although the slope of this

relationship is shallower for high-e�ort items.
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Wholesale Curbstoning

Finally, we consider wholesale curbstoning: copying an entire answer key. This form of

manipulation is unrelated to item characteristics and can therefore be described as follows:

mij = κ0, g(ej) = γ0,

with γ0 again close to one. The curbstoning model implies:

yij = γ0κ0 + (1− κ0) pj + νij, (14)

describing a linear relationship between scores and di�culty, with no interactions or higher-

order terms. Here, the coe�cient on pj is one minus the manipulation rate.

Testing alternative models

In this framework, a linear relationship between scores and item di�culty rules out di�culty-

related manipulation, while curbstoning related to grading e�ort generates an interaction

term between item di�culty and e�ort. We use these predictions to disentangle alternative

explanations for score manipulation. Item di�culty, 1− pj, is taken from response data from

classrooms with monitors in Veneto, an area where manipulation rates are low. Grading e�ort

is summarized by distinguishing between closed multiple choice questions and unstructured,

open questions in which the student responds in his or her own words (the Appendix gives

examples). The e�ort variable, ej, indicates open questions.16

As a �rst pass, Figure 7 plots item-level responses in Sicily, a high-manipulation region,

against the Veneto response rate standardized to have mean zero and unit variance by grade

and survey year in that region. We also standardize Sicily's item-level responses by grade and

school year with respect to national �gures (excluding Veneto). In addition to raw data, the

�gure shows linear and local linear regression �tted values, separately for math and language

scores. The linear model �ts remarkably well, a fact that weighs against the notion that

manipulation is related to item di�culty.

The possibility of an e�ort interaction of the sort described by equation (13) is explored

16We can allow for regional variation in ability by parameterizing di�culty as proportional to the Veneto
score. This leaves the key predictions of our framework unchanged, i.e. nonlinearity and an e�ort interaction
in equations (12) and (13), while the coe�cient on percent correct in Veneto in the wholesale curbstoning
model in equation (14) becomes this factor of proportionality times 1− κ0.
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in Figure 8. This �gure plots the Sicily-Veneto relation separately for items with high and

low-grading-e�ort. These estimates indeed show a shallower di�culty slope for high-e�ort

items, especially for language.

The relations in these �gures are quanti�ed with an empirical version of equation (10).

Speci�cally we estimate:

yj = α0 + α1pj + α2p
2
j + β0ej + β1ejpj + υj, (15)

a regression of item-level response data for Sicily and Southern Italy on item di�culty and

its square, grading e�ort, and the interaction between grading e�ort and di�culty. These

estimates control for grade and year e�ects, with standard errors clustered by item (models

for all Southern regions also include region e�ects).

This item-level analysis o�ers little evidence of selective manipulation, as can be seen

in the insigni�cant squared terms in columns 3 and 4 of Table 9. On the other hand,

models allowing an e�ort interaction generate substantial negative estimates of the interaction

term, β1, signi�cantly di�erent from zero in the case of language, though smaller and only

marginally signi�cant for math. Thus, wholesale curbstoning appears to give a reasonable

account of score manipulation for math, while the language results reveal evidence of selective

manipulation on high-grading-e�ort items. The results in columns 5 and and 6 are also

consistent with modest e�ort-related sloppiness in transcription. To see this, suppose γ1 in

equation (13) is about −0.05 and that transcription is otherwise nearly perfect, so γ0 ≈ 0.95.

Using data for language scores from the South, the estimate of κ0 (the baseline manipulation

rate) for the South implied by the item di�culty coe�cient (1 − κ0 in equation (12)) is

around 0.15. The grading-e�ort main e�ect should therefore be about 0.15 × (−0.05) +

0.95κ1 + κ1(−0.05). With an estimate of κ̂1 = 0.116 in column 6, this comes out at 0.097,

close to the value of the estimated grading-e�ort main e�ect seen in the table.

7 Summary and Directions for Further Work

The causal e�ects of class size on Italian primary schoolers' test scores are identi�ed by

quasi-experimental variation arising from Italy's version of Maimonides' Rule. The resulting

estimates show small classes boost test scores in Southern provinces, an area known as the
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Mezzogiorno, but not elsewhere. Analyses of data on score manipulation and a random-

ized classroom monitoring experiment reveal substantial manipulation in the Mezzogiorno,

most likely by teachers. For a variety of institutional and behavioral reasons, teacher score

manipulation is inhibited by larger classes as well as by monitoring. Estimates of a model

that jointly captures the causal e�ects of class size and score manipulation on measured

achievement suggest the returns to class size in the Mezzogiorno are explained by the causal

e�ects of class size on score manipulation, with no apparent gains in learning. These �ndings

show how class size e�ects can be misleading even where internal validity is probably not an

issue. Our results also show how score manipulation can arise as a result of shirking in an

institutional setting where standardized assessments are divorced from accountability.

These �ndings raise a number of questions, including those of why teacher manipulation

is so much more prevalent in the Mezzogiorno, and what can be done to enhance accurate

assessment in Italy and elsewhere. Manipulation in the Mezzogiorno arises in part from local

exam proctoring and local transcription of answer sheets, a strategy meant to lower costs.

New York's venerable Regent's exams were also graded locally until 2013, an arrangement

that likewise appears to have facilitated score manipulation. Moreover, as with INVALSI

assessments, manipulation of Regent's scores appears to be unrelated to NCLB-style ac-

countability pressure (Dee et al., 2011). By contrast, the UK's Key Stage 2 primary-level

assessments are marked by external examiners, a costly but probably worthwhile e�ort.17 It's

also worth asking why class size reductions fail to enhance learning in Italy, while evidence

from the US, Israel, and a number of other countries suggest class size reductions increase

learning. We hope to answer these questions in future work.

17See https://home.edexcelgateway.com/pages/job_search_view.aspx?jobId=537 for information on Key
Stage 2 marking costs.
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Table 1: Descriptive Statistics

Italy North/Centre South Italy North/Centre South
(1) (2) (3) (4) (5) (6)

Female* 0.49 0.49 0.49 0.49 0.49 0.49
(0.50) (0.50) (0.50) (0.50) (0.50) (0.50)

Immigrant* 0.10 0.14 0.03 0.10 0.14 0.03
(0.30) (0.35) (0.17) (0.30) (0.34) (0.18)

Father HS* 0.34 0.34 0.33 0.32 0.33 0.30
(0.47) (0.48) (0.47) (0.47) (0.47) (0.46)

Mother employed* 0.57 0.68 0.39 0.55 0.66 0.38
(0.49) (0.47) (0.49) (0.50) (0.47) (0.49)

Pct correct: math 47.9 46.1 51.1 64.2 63.3 65.6
(14.6) (12.9) (16.7) (12.9) (10.9) (15.5)

Pct correct: language 69.8 69.2 70.8 74.2 74.3 74.1
(10.9) (9.2) (13.3) (8.9) (7.5) (10.8)

Class size 20.1 20.3 19.9 19.7 19.9 19.3
(3.40) (3.35) (3.48) (3.72) (3.67) (3.76)

Score manipulation: math 0.06 0.02 0.14 0.07 0.02 0.14
(0.24) (0.13) (0.35) (0.25) (0.15) (0.34)

Score manipulation: language 0.05 0.02 0.11 0.06 0.02 0.11
(0.23) (0.14) (0.31) (0.23) (0.15) (0.31)

Number of classes 67,453 42,747 24,706 72,536 44,739 27,797

Number of classes 1.95 1.87 2.11 1.94 1.85 2.10
(1.10) (1.01) (1.27) (1.10) (0.98) (1.28)

Enrollment 40.5 38.8 43.8 38.9 37.3 41.7
(25.2) (23.0) (28.6) (25.2) (22.8) (28.9)

Number of schools 34,591 22,863 11,728 37,476 24,225 13,251

Number of schools 2.00 2.32 1.57 2.10 2.42 1.69
(1.05) (1.13) (0.74) (1.09) (1.17) (0.81)

Number of classes 3.89 4.33 3.31 4.07 4.48 3.55
(1.97) (1.95) (1.85) (1.95) (1.91) (1.88)

Enrollment 86.0 95.3 73.7 85.2 94.0 73.9
(40.6) (39.5) (38.7) (40.5) (39.1) (39.3)

External monitor 0.22 0.20 0.23 0.22 0.20 0.23
(0.41) (0.40) (0.42) (0.41) (0.40) (0.42)

Number of institutions 17,333 9,866 7,467 17,830 9,997 7,833

C. Institution Characteristics

“Mean” and “s.d.” for class characteristics are computed using one observation per class; “Mean”
and “s.d.” for school characteristics are computed using one observation per school; “Mean” and
“s.d.” for institutions are computed using one observation per institution. * conditional on non-
missing survey response.

Table I. Descriptive statistics

Grade 2 (2009-2011) Grade 5 (2009-2011)

A. Class Characteristics

B. School Characteristics
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Table 2: OLS and IV/2SLS Estimates of the E�ect of Class Size on Test Scores

Italy North/Centre South Italy North/Centre South Italy North/Centre South
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Class size -0.0078     -0.0224*** 0.0091     -0.0519***    -0.0436***    -0.0957***    -0.0609***    -0.0417**    -0.1294**
(0.0070) (0.0067) (0.0146) (0.0134) (0.0115) (0.0362) (0.0196) (0.0171) (0.0507)

Enrollment ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Enrollment squared ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Interactions ✗ ✗ ✗

N 140,010 87,498 52,512 140,010 87,498 52,512 140,010 87,498 52,512

Class size 0.0029     -0.0188***     0.0328***      -0.0395***     -0.0313***    -0.0641**     -0.0409*** -0.0215    -0.0937**
(0.0055) (0.0053) (0.0114) (0.0106) (0.0092) (0.0289) (0.0155) (0.0136) (0.0403)

Enrollment ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Enrollment squared ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Interactions ✗ ✗ ✗

N 140,010 87,498 52,512 140,010 87,498 52,512 140,010 87,498 52,512

Notes: Columns 1-3 report OLS estimates of the effect of class size on scores. Columns 4-9 report 2SLS estimates using Maimonides' Rule as an
instrument. The unit of observation is the class. Class size coefficients show the effect of 10 students. Models with interactions allow the quadratic
running variable control to differ across windows of ±12 students around each cutoff. Robust standard errors, clustered on school and grade, are shown
in parentheses. Control variables include: % female students, % immigrants, % fathers at least high school graduate, % employed mothers, %
unemployed mothers, % mother NILF, grade and year dummies, and dummies for missing values . All regressions include sampling strata controls
(grade enrollment at institution, region dummies and their interactions). * significant at 10%; ** significant at 5%; *** significant at 1%.

Table 2. OLS and IV/2SLS Estimates of the Effect of Class Size on Test Scores

OLS IV/2SLS

B. Language

A. Math
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Table 3: OLS and IV/2SLS Estimates of the E�ect of Class Size on Score Manipulation

Italy North/Centre South Italy North/Centre South Italy North/Centre South
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Class size     -0.0163***    -0.0074***    -0.0309***     -0.0186*** -0.0042     -0.0542***    -0.0179*** -0.0053    -0.0471**
(0.0025) (0.0017) (0.0058) (0.0047) (0.0031) (0.0143) (0.0069) (0.0045) (0.0202)

Enrollment ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Enrollment squared ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Interactions ✗ ✗ ✗

N 139,996 87,491 52,505 139,996 87,491 52,505 139,996 87,491 52,505

Class size     -0.0166***    -0.0120***    -0.0244***      -0.0202***    -0.0116***     -0.0400***    -0.0161** -0.0059    -0.0379**
(0.0023) (0.0018) (0.0051) (0.0043) (0.0032) (0.0128) (0.0063) (0.0048) (0.0177)

Enrollment ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Enrollment squared ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Interactions ✗ ✗ ✗

N 140,003 87,493 52,510 140,003 87,493 52,510 140,003 87,493 52,510

Notes: Columns 1-3 report OLS estimates of the effect of class size on score manipulation. Columns 4-9 report 2SLS estimates using Maimonides'
Rule as an instrument. Class size coefficients show the effect of 10 students. Models with interactions allow the quadratic running variable control to
differ across windows of ±12 students around each cutoff. The unit of observation is the class. Robust standard errors, clustered on school and grade,
are shown in parentheses. Control variables include: % female students, % immigrants, % fathers at least high school graduate,% employed mothers,
% unemployed mothers, % mother NILF, grade and year dummies, and dummies for missing values. All regressions include sampling strata controls
(grade enrollment at institution, region dummies and their interactions). * significant at 10%; ** significant at 5%; *** significant at 1%.

Table 3. OLS and IV/2SLS Estimates of the Effect of Class Size on Score Manipulation

OLS IV/2SLS

A. Math

B. Language28



Table 4: Covariate Balance in the Monitoring Experiment

Control Mean Treatment 
Difference

Control Mean
Treatment 
Difference

Control Mean
Treatment 
Difference

(1) (2) (3) (4) (5) (6)

Class size 19.812 0.0348 20.031 0.0179 19.456 0.0623
[3.574] (0.0303) [3.511] (0.0374) [3.646] (0.0515)

Grade enrollment at school 53.119 -0.4011 49.804 -0.5477 58.483 -0.1410
[30.663] (0.3289) [27.562] (0.3913) [34.437] (0.5909)

% in class sitting the test 0.939 0.0001 0.934 0.0006 0.947 -0.0007
[0.065] (0.0005) [0.066] (0.0006) [0.062] (0.0008)

% in school sitting the test 0.938 -0.0001 0.933 0.0005 0.946 -0.0010
[0.054] (0.0005) [0.055] (0.0006) [0.051] (0.0008)

% in institution sitting the test 0.937 -0.0001 0.932 0.0005 0.945 -0.0010
[0.045] (0.0004) [0.043] (0.0005) [0.045] (0.0007)

Female students 0.482 0.0012 0.483 0.0004 0.479 0.0027*
[0.121] (0.0009) [0.1179] (0.0011) [0.126] (0.0016)

Immigrant students 0.097 0.0010 0.137 0.0004 0.031     0.0020***
[0.120] (0.0010) [0.13] (0.0014) [0.056] (0.0007)

Father HS 0.25      0.0060*** 0.258      0.0061*** 0.238    0.0056**
[0.168] (0.0016) [0.163] (0.0019) [0.176] (0.0027)

Mother employed 0.441      0.0085*** 0.532     0.0067** 0.295     0.0117***
[0.267] (0.0024) [0.258] (0.0031) [0.210] (0.0035)

Missing data on father's education 0.223     -0.0217*** 0.225     -0.0186*** 0.221     -0.0271***
[0.341] (0.0034) [0.340] (0.0043) [0.343] (0.0057)

Missing data on mother's occupation 0.195     -0.0168*** 0.196     -0.0083** 0.194      -0.0316***
[0.328] (0.0033) [0.325] (0.0042) [0.333] (0.0054)

Missing data on country of origin 0.033     -0.0115*** 0.025     -0.0078*** 0.045     -0.0178***
[0.163] (0.0013) [0.143] (0.0014) [0.192] (0.0026)

N
Notes: Columns 1, 3 and 5 show means and standard deviations for variables listed at left. Other columns report coefficients from
regressions of each variable on a treatment dummy (indicating classroom monitoring), grade and year dummies, and sampling strata
controls (grade enrollment at institution, region dummies and their interactions). Standard deviations for the control group are in square
brackets, robust standard errors are in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%.

Table 4. Covariate Balance in the Monitoring Experiment 
Italy North/Centre South

A. Administrative Data on Schools

B. Data Provided by School Staff

C. Non-Response Indicators

140,010 87,498 52,512
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Table 5: Monitoring E�ects on Score Manipulation and Test Scores

Italy North/Centre South Italy North/Centre South
(1) (2) (3) (4) (5) (6)

Monitor at institution (Migkt)     -0.029***     -0.010***     -0.062***     -0.112***     -0.075***     -0.180***
(0.002) (0.001) (0.004) (0.006) (0.005) (0.012)

Means 0.064 0.020 0.139 0.007 -0.074 0.141
(sd) (0.246) (0.139) (0.346) (0.637) (0.502) (0.796)

N 139,996 87,491 52,505 140,010 87,498 52,512

Monitor at institution (Migkt)     -0.025***     -0.012***     -0.047***     -0.081***     -0.054***     -0.131***
(0.002) (0.001) (0.004) (0.004) (0.004) (0.009)

Means 0.055 0.023 0.110 0.01 -0.005 0.035
(sd) (0.229) (0.149) (0.313) (0.523) (0.428) (0.649)

N 140,003 87,493 52,510 140,010 87,498 52,512

Notes: Columns 1-3 report first stage estimates of the effect of a classroom monitor on score manipulation. Columns
4-6 show the reduced form effect of a monitor on test scores. All models control for a quadratic in grade enrollment,
segment dummies and their interactions. The unit of observation is the class. Robust standard errors, clustered on
school and grade, are shown in parentheses. Control variables include: % female students, % immigrants, % fathers
at least high school graduate, % employed mothers, % unemployed mothers, % mother NILF, grade and year
dummies, and dummies for missing values in these variables. All regressions include sampling strata controls (grade
enrollment at institution, region dummies and their interactions). * significant at 10%; ** significant at 5%; ***
significant at 1%.

Table 5. Monitoring Effects on Score Manipulation and Test Scores 

A. Math

Score manipulation Test scores

B. Language
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Table 6: Twin First Stages

Italy North/Centre South Italy North/Centre South
(1) (2) (3) (4) (5) (6)

Maimonides' Rule (figkt)    -0.0009** -0.0003    -0.0019**    -0.0008** -0.0003    -0.0015**
(0.0004) (0.0002) (0.0009) (0.0003) (0.0003) (0.0008)

Monitor at institution (Migkt)     -0.029***     -0.010***     -0.062***     -0.025***     -0.012***     -0.047***
(0.002) (0.001) (0.004) (0.002) (0.001) (0.004)

N 139,996 87,491 52,505 140,003 87,493 52,510

Italy North/Centre South
(1) (2) (3)

Maimonides' Rule (figkt)    0.513***    0.555***    0.433***
(0.0006) (0.0008) (0.0011)

Monitor at institution (Migkt) 0.013 0.032 -0.009
(0.024) (0.027) (0.045)

N 140,010 87,498 52,512

Table 6. Twin First Stages

Notes: Panel A report first stage estimates of the effect of the Maimonides' Rule and a classroom monitor on score
manipulation. Panel B report first stage estimates of the effect of the Maimonides' Rule and a classroom monitor on
class size. All models control for a quadratic in grade enrollment, segment dummies and their interactions. The unit of
observation is the class. Robust standard errors, clustered on school and grade, are shown in parentheses. Control
variables include: % female students, % immigrants, % fathers at least high school graduate, % employed mothers, %
unemployed mothers, % mother NILF, grade and year dummies, and dummies for missing values in these variables. All
regressions include sampling strata controls (grade enrollment at institution, region dummies and their interactions). *
significant at 10%; ** significant at 5%; *** significant at 1%.

B. Class size

A. Score Manipulation
LanguageMath
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Table 7: IV/2SLS Estimates of the E�ect of Class Size and Score Manipulation on Test Scores

Italy North/Centre South Italy North/Centre South Italy North/Centre South
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Class size 0.0075 -0.0029 0.0062 0.0024 -0.0113 0.0133 0.0116 0.0136 0.0473
(0.0213) (0.0298) (0.0441) (0.0190) (0.0251) (0.0378) (0.0316) (0.0482) (0.0675)

Score manipulation     3.82***     7.33***     2.88***     3.82***  7.02***     2.87***     4.10***    9.21**     3.33***
(0.19) (0.79) (0.16) (0.19) (0.73) (0.16) (0.96) (4.41) (0.86)

Class size * Score manipulation -0.1464 -1.2700 -0.2273
(0.4814) (2.1598) (0.4304)

Overid test [P-value] [0.914] [0.600] [0.541] [0.914] [0.475] [0.476]
N 139,996 87,491 52,505 139,996 87,491 52,505 139,996 87,491 52,505

Class size 0.0121 0.0049 0.0127 0.0218 0.0109 0.0491 0.0325 0.0098 0.1337*
(0.0173) (0.0196) (0.0385) (0.0153) (0.0174) (0.0329) (0.0308) (0.0320) (0.0800)

Score manipulation     3.29***     4.50***     2.80***     3.21***     4.34***     2.74***     3.59***  4.31*    4.18***
(0.18) (0.45) (0.18) (0.18) (0.42) (0.18) (1.03) (2.25) (1.30)

Class size * Score manipulation -0.2130 -0.0029 -0.7058
(0.4980) (1.0898) (0.6214)

Overid test [P-value] [ 0.129] [0.796] [0.036] [0.216] [0.844] [0.109]
N 140,003 87,493 52,510 140,003 87,493 52,510 140,003 87,493 52,510

IV/2SLS (overidentified-interacted)

A. Math

B. Language

Notes: Columns 1-3 show 2SLS estimates using Maimonides' Rule and classroom monitor as instruments. Columns 4-6 show overidentified 2SLS
estimates which also use dummies for grade enrollment being in a 10 percent window below and above each cutoff (2 students) as instrument.
Columns 7-9 add the interaction between class size and score manipulation and use the interaction of Maimonide's Rule with classroom monitor
and the interactions of dummies for grade enrollment being in a 10 percent window below and above each cutoff with classroom monitor as
instruments. Class size coefficients show the effect of 10 students. All models control for a quadratic in grade enrollment, segment dummies and
their interactions. The unit of observation is the class. Robust standard errors, clustered on school and grade, are shown in parentheses. Control
variables include: % female students, % immigrants, % fathers at least high school graduate,% employed mothers, % unemployed mothers, %
mother NILF, grade and year dummies, and dummies for missing values in these variables. All regressions include sampling strata controls (grade
enrollment at institution, region dummies and their interactions). * significant at 10%; ** significant at 5%; *** significant at 1%.

Table 7. IV/2SLS Estimates of the Effect of Class Size and Score Manipulation on Test Scores
IV/2SLS (overidentified)IV/2SLS
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Table 8: Maimonides' Rule and Covariate Balance

Control Mean Treatment 
Difference Control Mean Treatment 

Difference Control Mean Treatment 
Difference

(1) (2) (3) (4) (5) (6)

% in class sitting the test 0.9392 0.0000 0.9345 0.0001 0.9471 0.0000
[0.0643] (0.0001) [0.0657] (0.0001) [0.061] (0.0001)

% in school sitting the test 0.9386 0.0001 0.9339 0.0001 0.9464 0.0001
[0.0534] (0.0001) [0.0548] (0.0001) [0.05] (0.0001)

% in institution sitting the test 0.9374 -0.0001 0.9327 -0.0001 0.9451 -0.0000
[0.0436] (0.0001) [0.0426] (0.0001) [0.0441] (0.0001)

Female 0.482 0.0000 0.4836 0.0002 0.4792 -0.0002
[0.1205] (0.0002) [0.1176] (0.0002) [0.1251] (0.0003)

Immigrant 0.0981     -0.0007*** 0.1375     -0.0007*** 0.0324     -0.0004***
[0.1198] (0.0002) [0.1298] (0.0003) [0.0572] (0.0001)

Father HS 0.2546   0.0006** 0.2613 0.0002 0.2434    0.0013***
[0.1678] (0.0003) [0.1626] (0.0003) [0.1755] (0.0005)

Mother employed 0.4503     0.0012*** 0.5356  0.0010* 0.3082     0.0016***
[0.2658] (0.0004) [0.2574] (0.0005) [0.2138] (0.0006)

Missing data on father's education 0.2187 0.0003 0.2216    0.0015** 0.2139  -0.0018*
[0.3361] (0.0006) [0.3358] (0.0007) [0.3367] (0.0010)

Missing data on mother's occupation 0.1925 0.0002 0.1963    0.0014** 0.1861  -0.0019*
[0.3239] (0.0006) [0.3231] (0.0007) [0.3251] (0.0010)

Missing data on country of origin 0.0296 -0.0001 0.0232 -0.0001 0.0401 -0.0000
[0.1544] (0.0002) [0.1361] (0.0003) [0.1804] (0.0005)

N
Notes: Columns 1, 3 and 5 show means and standard deviations for variables listed at left. Other columns report coefficients from
regressions of each variable on predicted class size (Maimonides' Rule), a quadratic in grade enrollment, segment dummies and their
interactions, grade and year dummies, and sampling strata controls (grade enrollment at institution, region dummies and their interactions).
Standard deviations for the control group are in square brackets, robust standard errors are in parentheses. * significant at 10%; **
significant at 5%; *** significant at 1%.

B. Data Provided by School Staff

Table 8. Maimonides' Rule and Covariate Balance 
Italy North/Centre South

A. Administrative Data on Schools

140,010 87,498 52,512

C. Non-Response Indicators

33



Table 9: Testing Alternative Models of Score Manipulation

Sicily South Sicily South Sicily South
(1) (2) (3) (4) (5) (6)

Percent correct (pj)    0.698***    0.769***    0.643***    0.713***    0.725***    0.792***
(0.017) (0.015) (0.109) (0.090) (0.021) (0.018)

Percent correct squared (pj
2) 0.047 0.047

(0.086) (0.071)
Open (ej) 0.040   0.038*

(0.024) (0.020)
Percent correct (pj) * open (ej)   -0.066*   -0.054*

(0.035) (0.029)

N 229 1832 229 1832 229 1832

Percent correct (pj)    0.790***    0.829***    0.650***    0.735***    0.812***    0.851***
(0.020) (0.017) (0.132) (0.113) (0.019) (0.015)

Percent correct squared (pj
2) 0.107 0.072

(0.092) (0.078)
Open (ej)   0.094**    0.100***

(0.038) (0.030)
Percent correct (pj) * open (ej)   -0.115**    -0.116***

(0.047) (0.037)

N 314 2,512 314 2,512 314 2,512

Notes: This table shows item-level analysis that discriminates among different manipulation behaviors. The
outcome is the average score across classes computed for each item, after standardizing by grade and school
year in Sicily (columns 1, 3 and 5) and South (columns 2, 4 and 6). Columns 3 and 4 test for selective
manipulation (dishonesty related to item difficulty), columns 5 and 6 test for selective shirking and sloppiness.
All regressions include grade and year fixed effects. Columns 2, 4 and 6 also control for region fixed effects.
Standard errors are clustered by item. * significant at 10%; ** significant at 5%; *** significant at 1%.

Table 9: Testing Alternative Models of Manipulation

A. Math

B. Language34



Figure 1: Manipulation Rates by Province

35



Figure 2: Class Size by Enrollment in Pre-reform Years

Notes: The figure shows actual class size and as predicted by Maimonides' Rule in 
pre-reform years 
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Figure 3: Class Size by Enrollment in Post-reform Years

Notes: The figure shows actual class size and as predicted by Maimonides' Rule in 
post-reform years
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Figure 4: Class Size and Enrollment, centered at Maimonides Cuto�s

    Notes:  The solid line shows a one-sided LLR fit.
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Figure 5: Test Scores and Enrollment, centered at Maimonides Cuto�s

Notes:  The solid line shows a one-sided LLR fit.
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Figure 6: Score Manipulation and Enrollment, centered at Maimonides Cuto�s

   Notes: The solid line shows a one-sided LLR fit.
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Figure 7: Looking for Nonlinearity

Notes: The figure plots average percent correct by item in Sicily against average percent correct in Veneto.
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Figure 8: The E�ect of Grading E�ort

Notes: The figure plots average percent correct by item in Sicily against average percent correct in Veneto, with 
linear fit of the lines separately by item grading effort. Points plotted with a "×" refer to open question, points plotted 
with a "�" refer to closed questions.
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Appendix

Score Manipulation Imputation

Our imputation is closely related to that used by INVALSI and described in Quintano et al.

(2009). INVALSI assigns a manipulation probability to each class in three steps.

The �rst step computes the following four summary statistics.

(1) Within-class average score:

p̄i =

Ni∑
j=1

pji

Ni

, (16)

where pji denotes the score of student j in class i; Ni denotes the number of test-takers in

class i.

(2) Within-class standard deviation of scores:

σi =

√√√√√√
Ni∑
j=1

(pji − p̄i)2

Ni

. (17)

(3) Within-class average percent missing

MCi =

Ni∑
j=1

Mji

Ni

, (18)

where Mji is the fraction of test items skipped by student j in class i.

(4) Within-class index of answer homogeneity:

Ēi =

Q∑
q=1

Eqi

Q
, (19)

where q = 1, .., Q indexes test items and Eqi is a Gini measure of homogeneity that equals

value zero if all students in class i provide the same answer to item q. This can be interpreted

as the Her�ndahl index of the share of students with similar response patterns in the class.

In the second step, the �rst two principal components are extracted from the 4 × 4 cor-

relation matrix determined by these indicators, yielding a percentage of explained variance

which is - across years, subjects and grades - well above 90%. Denote these principal com-

47



ponents by ψ1i and ψ2i. The third step consists of a cluster analysis that creates G groups

from the distribution of (ψ1i, ψ2i). INVALSI sets G = 8, yielding a matrix whose elements

are, for each class, eight group membership probabilities. This procedure is known as �fuzzy

clustering� (see Bezdek, 1981), since data elements (classes, in our setting) can be assigned

to one or more groups. With �hard clustering�, data elements belong to exactly one cluster.

INVALSI identi�es likely manipulators as those in the group with values of (ψ1i, ψ2i) that

are most extreme (see Figure 8 in Quintano et al. 2009). In practice, the suspicious group is

characterized by (i) abnormally large values of p̄i, and (ii) small values of σi, MCi and Ēi,

relative to the population average of these indicators. This group is �agged as the �outlier�

or manipulating cluster. The INVALSI manipulation indicator gives, for each class, the

membership probability for this cluster. Our hard clustering computations codes a dummy

for manipulating classes. This dummy indicates classes whose values of (ψ1i, ψ2i) belong to

the manipulating cluster identi�ed by INVALSI.
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Table A1: Reduced Form Estimates of the E�ect of Maimonides' Rule on Class Size, Test Scores, and Score Manipulation

Italy North/Centre South Italy North/Centre South
(1) (2) (3) (4) (5) (6)

Maimonides' Rule    0.513***    0.555***    0.433***
(0.006) (0.008) (0.011)

Means 19.88 20.07 19.58
(sd) (3.58) (3.52) (3.64)

N 140,010 87,498 52,512

Maimonides' Rule     -0.0031***     -0.0023**    -0.0056**     -0.0021*** -0.0012    -0.0041**
(0.0010) (0.0009) (0.0022) (0.0008) (0.0008) (0.0017)

Means 0.007 -0.074 0.141 0.01 -0.005 0.035
(sd) (0.637) (0.502) (0.796) (0.523) (0.428) (0.649)

N 140,010 87,498 52,512 140,010 87,498 52,512

Maimonides' Rule     -0.0009*** -0.0003    -0.0020**    -0.0008** -0.0003    -0.0016**
(0.0004) (0.0002) (0.0009) -0.0003 -0.0003 -0.0008

Means 0.065 0.02 0.139 0.055 0.023 0.110
(sd) (0.246) (0.139) (0.346) (0.229) (0.149) (0.313)

N 139,996 87,491 52,505 140,003 87,493 52,510

Math

Notes: This table shows the reduced form effect of the Maimonides' Rule on class size (Panel A), test scores (Panel B), score
manipulation (Panel C). All models control for a quadratic in grade enrollment, segment dummies and their interactions. The unit
of observation is the class. Robust standard errors, clustered on school and grade, are shown in parentheses. Control variables
include: % female students, % immigrants, % fathers at least high school graduate, % employed mothers, % unemployed
mothers, % mother NILF grade and year dummies, and dummies for missing values in these variables. All regressions include
sampling strata controls (grade enrollment at institution, region dummies and their interactions). * significant at 10%; **
significant at 5%; *** significant at 1%.

Table A1. Reduced Form Estimates of the Effect of Maimonides' Rule on Class Size, Test Scores, and Score Manipulation

Language

B. Test Scores

C. Score Manipulation

A. Class size
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Table A2: First Stage Estimates for Over-Identi�ed Models

Italy North/Centre South Italy North/Centre South Italy North/Centre South
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Maimonides' Rule (figkt)    0.704***    0.753***    0.617***     -0.0009** -0.0003    -0.0021*     -0.0014***    -0.0008**    -0.0024**
(0.0059) (0.0069) (0.0107) (0.0005) (0.0003) (0.0011) (0.0004) (0.0003) (0.0010)

Monitor at institution (Migkt) 0.010 0.029 -0.013     -0.029***     -0.010***     -0.062***     -0.025***     -0.012***     -0.047***
(0.023) (0.026) (0.044) (0.002) (0.001) (0.004) (0.002) (0.001) (0.004)

2 students below cutoff   -1.427***   -1.154***   -1.865*** 0.002 -0.002 0.008 0.010** 0.005 0.018
(0.083) (0.101) (0.138) (0.005) (0.003) (0.012) (0.005) (0.004) (0.011)

1 student below cutoff   -2.258***   -2.053***   -2.580*** 0.001 0.001 0.000 0.007 0.009** 0.002
(0.093) (0.116) (0.150) (0.005) (0.004) (0.012) (0.005) (0.004) (0.011)

1 student above cutoff   2.411***   3.026***   1.519*** 0.000 0.003 -0.004 -0.001 -0.001 -0.001
(0.097) (0.132) (0.138) (0.006) (0.005) (0.013) (0.005) (0.004) (0.012)

2 students above cutoff    1.247***    1.546***    0.826*** 0.001 -0.004 0.007 -0.007 -0.005 -0.012
(0.083) (0.114) (0.120) (0.006) (0.004) (0.013) (0.005) (0.004) (0.009)

N 140,010 87,498 52,512 139,996 87,491 52,505 140,003 87,493 52,510

Notes: Columns 1-3 report first stage estimates of the effect of the Maimonides' Rule, a classroom monitor and dummies for grade enrollment being in a 10
percent window below and above each cutoff on class size. Columns 4-9 show first stage estimates of the effect of the Maimonides' Rule, a classroom
monitor and dummies for grade enrollment being in a 10 percent window (2 students) above and below each cutoff on score manipulation. All models
control for a quadratic in grade enrollment, segment dummies and their interactions. The unit of observation is the class. Robust standard errors, clustered
on school and grade, are shown in parentheses. Control variables include: % female students, % immigrants, % fathers at least high school graduate, %
employed mothers, % unemployed mothers, % mother NILF, grade and year dummies, and dummies for missing values in these variables. All regressions
include sampling strata controls (grade enrollment at institution, region dummies and their interactions). * significant at 10%; ** significant at 5%; ***
significant at 1%.

Table A2. First Stage Estimates for Over-Identified Models

Class size Score manipulation math Score manipulation language
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Table A3: Covariates and Maimonides' Rule with and without External Monitors

Italy North/Centre South Italy North/Centre South
(1) (2) (3) (4) (5) (6)

% in class sitting the test 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000
(0.0002) (0.0002) (0.0003) (0.0001) (0.0001) (0.0002)

% in school sitting the test 0.0003 0.0003 0.0002 0.0001 0.0001 0.0001
(0.0002) (0.0002) (0.0003) (0.0001) (0.0001) (0.0002)

% in institution sitting the test -0.0000 -0.0000 0.0001 -0.0001* -0.0002* -0.0000
(0.0001) (0.0002) (0.0003) (0.0001) (0.0001) (0.0001)

Female -0.0003 -0.0006 0.0001 0.0001 0.0005* -0.0003
(0.0003) (0.0004) (0.0006) (0.0002) (0.0002) (0.0003)

Immigrant -0.0005 -0.0002    -0.0007**     -0.0007***    -0.0009***  -0.0003*
(0.0003) (0.0005) (0.0003) (0.0002) (0.0003) (0.0002)

Father HS -0.0005 -0.0002 -0.0014     0.0010*** 0.0003     0.0020***
(0.0005) (0.0006) (0.0010) (0.0003) (0.0004) (0.0005)

Mother employed 0.0001 0.0003 -0.0004     0.0015***     0.0012**     0.0022***
(0.0008) (0.0010) (0.0012) (0.0004) (0.0006) (0.0006)

Missing data on father's education 0.0014 0.0012 0.0019 0.0000     0.0016**     -0.0026**
(0.0011) (0.0013) (0.0020) (0.0007) (0.0008) (0.0012)

Missing data on mother's occupation 0.0018* 0.0017 0.0020 -0.0002 0.0012     -0.0028**
(0.0011) (0.0013) (0.0019) (0.0007) (0.0008) (0.0011)

Missing data on country of origin 0.0006 0.0003 0.0011 -0.0002 -0.0002 -0.0003
(0.0004) (0.0004) (0.0008) (0.0003) (0.0003) (0.0006)

N 34,325 22,174 12,151 105,685 65,324 40,361

Table A3. Covariate Balance in Maimonides' Rule for Institutions with and without External Monitor 

Notes: This table reports coefficients from regressions of the variables listed at left on Maimonides' Rule, controlling for a
quadratic in grade enrollment, enrollment segment dummies and their interactions, grade and year dummies, and sampling
strata controls (grade enrollment at institution, region dummies and their interactions). Columns 1-3 show results for the
sample with monitors; columns 4-6 show results for the sample without monitors. Robust standard errors, clustered on school
and grade, are shown in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%.

Institutions with Monitor Institutions without Monitor

A. Administrative Data on Schools

B. Data Provided by School Staff

C. Non-Response Indicators
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Figure A1: Example of open-ended question in math test - V grade 2010/11

52



Figure A2: Example of open-ended question in language test - V grade 2010/11

ITA5  18 

C4. Nella frase che segue inserisci le parole mancanti scegliendole da 

questa lista: così, dove, perché, però, se, siccome. 

……………. non conoscevo la strada, ho chiesto a una signora ……….  

dovevo andare; …………….. non mi sono perso.    

  

 

 

C5. Nella frase che segue inserisci i sei segni di punteggiatura mancanti. 

L a  m a m m a  c h i a m ò  C a p p u c c e t t o  R o s s o  e  l e  d i s s e  P e r  

p i a c e r e ,  v a i  d a l l a  n o n n a ;  p o r t a l e  q u e s t e  c o s e  i l  b u r r o  

l e  u o v a  e  l o  z u c c h e r o         

 

 

C6. Leggi le parole nell’ovale. Una non c’entra con le altre. Cerchiala e 

poi indica il perché scegliendo tra le quattro alternative date sotto. 

 

 

 

 

 

 

 

 

□ A. È una parola non usata 

□ B. Non si scrive con “cq” 

□ C. Non è un derivato di acqua 

□ D. Non è un nome, è un verbo 

acqua acquazzone acquarello 

acquitrino  acquedotto acquario 

annacqua nacque sciacqua 
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Figure A3: Answer sheet for V grade in 2010/11

 Servizio Nazionale di Valutazione a.s. 2010/11   

 CLASSE:  
  Scheda Risposte Studente n°  

Risultati delle prove 
 

Codice istituto:� Codice�Scuola: 
Codice plesso: Livello:

Codice Classe:� NON CAMPIONE
Codice studente: Numero progressivo studente:

PROVA ITALIANO (1) PROVA MATEMATICA (1) 
A1 ƑA ƑB ƑC ƑD ƑNV C1_a1 Ƒ0 Ƒ1 ƑNV   D1_a ƑV ƑF ƑNV   
A2 ƑA ƑB ƑC ƑD ƑNV C1_a2 Ƒ0 Ƒ1 ƑNV   D1_b ƑV ƑF ƑNV   
A3 ƑA ƑB ƑC ƑD ƑNV C1_b1 Ƒ0 Ƒ1 ƑNV   D1_c ƑV ƑF ƑNV   
A4 ƑA ƑB ƑC ƑD ƑNV C1_b2 Ƒ0 Ƒ1 ƑNV   D1_d ƑV ƑF ƑNV   
A5 ƑA ƑB ƑC ƑD ƑNV C1_b3 Ƒ0 Ƒ1 ƑNV   D2 ƑA ƑB ƑC ƑD ƑNV 
A6 ƑA ƑB ƑC ƑD ƑNV C2 ƑA ƑB ƑC ƑD ƑNV D3 Ƒ0 Ƒ1 ƑNV   
A7 ƑA ƑB ƑC ƑD ƑNV C3_a ƑNome ƑNon_Nome ƑNV D4_a ƑA ƑB ƑC ƑD ƑNV 
A8 ƑA ƑB ƑC ƑD ƑNV C3_b ƑNome ƑNon_Nome ƑNV D4_b Ƒ0 Ƒ1 ƑNV   
A9 ƑA ƑB ƑC ƑD ƑNV C3_c ƑNome ƑNon_Nome ƑNV D5 ƑA ƑB ƑC ƑD ƑNV 
A10 ƑA ƑB ƑC ƑD ƑNV C3_d ƑNome ƑNon_Nome ƑNV D6 ƑA ƑB ƑC ƑD ƑNV 
A11 ƑA ƑB ƑC ƑD ƑNV C3_e ƑNome ƑNon_Nome ƑNV D7 ƑA ƑB ƑC ƑD ƑNV 
A12 ƑA ƑB ƑC ƑD ƑNV C3_f ƑNome ƑNon_Nome ƑNV D8 ƑA ƑB ƑC ƑD ƑNV 
A13 ƑA ƑB ƑC ƑD ƑNV C3_g ƑNome ƑNon_Nome ƑNV D9 Ƒ0 Ƒ1 ƑNV   
A14 ƑA ƑB ƑC ƑD ƑNV C3_h ƑNome ƑNon_Nome ƑNV D10 ƑA ƑB ƑC ƑD ƑNV 
A15 ƑA ƑB ƑC ƑD ƑNV C3_i ƑNome ƑNon_Nome ƑNV D11 ƑA ƑB ƑC ƑD ƑNV 
A16 ƑA ƑB ƑC ƑD ƑNV C3_l ƑNome ƑNon_Nome ƑNV D12 Ƒ0 Ƒ1 ƑNV   
A17 ƑA ƑB ƑC ƑD ƑNV C3_m ƑNome ƑNon_Nome ƑNV D13 ƑA ƑB ƑC ƑD ƑNV 
B1 ƑA ƑB ƑC ƑD ƑNV C3_n ƑNome ƑNon_Nome ƑNV D14 ƑA ƑB ƑC ƑD ƑNV 
B2 ƑA ƑB ƑC ƑD ƑNV C3_o ƑNome ƑNon_Nome ƑNV D15 ƑA ƑB ƑC ƑD ƑNV 
B3 ƑA ƑB ƑC ƑD ƑNV C3_p ƑNome ƑNon_Nome ƑNV D16_a Ƒ0 Ƒ1 ƑNV 
B4 ƑA ƑB ƑC ƑD ƑNV C3_q ƑNome ƑNon_Nome ƑNV D16_b Ƒ0 Ƒ1 ƑNV 
B5 ƑA ƑB ƑC ƑD ƑNV C3_r ƑNome ƑNon_Nome ƑNV D17_a ƑV ƑF ƑNV 
B6 ƑA ƑB ƑC ƑD ƑNV C4 Ƒ0 Ƒ1 ƑNV   D17_b ƑV ƑF ƑNV 
B7 ƑA ƑB ƑC ƑD ƑNV C5 Ƒ0 Ƒ1 ƑNV   D17_c ƑV ƑF ƑNV 
B8 ƑA ƑB ƑC ƑD ƑNV C6 ƑA ƑB ƑC ƑD ƑNV D17_d ƑV ƑF ƑNV 
B9 ƑA ƑB ƑC ƑD ƑNV C7 Ƒ0 Ƒ1 ƑNV   D18 ƑA ƑB ƑC ƑD ƑNV 
B10 ƑA ƑB ƑC ƑD ƑNV C8 ƑA ƑB ƑC ƑD ƑNV D19 Ƒ0 Ƒ1 ƑNV 
B11 ƑA ƑB ƑC ƑD ƑNV C9 ƑA ƑB ƑC ƑD ƑNV D20 ƑA ƑB ƑC ƑD ƑNV 
B12 ƑA ƑB ƑC ƑD ƑNV C10 Ƒ0 Ƒ1 ƑNV   D21_a Ƒ0 Ƒ1 ƑNV 
B13 ƑA ƑB ƑC ƑD ƑNV       D21_b Ƒ0 Ƒ1 ƑNV 
B14 ƑA ƑB ƑC ƑD ƑNV       D22 ƑA ƑB ƑC ƑD ƑNV 
B15 ƑA ƑB ƑC ƑD ƑNV       D23_a Ƒ0 Ƒ1 ƑNV 
            D23_b Ƒ0 Ƒ1 ƑNV 
            D24_a Ƒ0 Ƒ1 ƑNV 
            D24_b Ƒ0 Ƒ1 ƑNV 
            D24_c Ƒ0 Ƒ1 ƑNV 

            D25 Ƒ0 Ƒ1 ƑNV 
            D26 ƑA ƑB ƑC ƑD ƑNV 
            D27 ƑA ƑB ƑC ƑD ƑNV 
            D28_a Ƒkm Ƒm Ƒcm Ƒmm ƑNV 
            D28_b Ƒkm Ƒm Ƒcm Ƒmm ƑNV 
            D28_c Ƒkm Ƒm Ƒcm Ƒmm ƑNV 
            D29_a ƑV ƑF ƑNV 
            D29_b ƑV ƑF ƑNV 
            D29_c ƑV ƑF ƑNV 
            D29_d ƑV ƑF ƑNV 
            D30 ƑA ƑB ƑC ƑD ƑNV 

 
 
 

(1) Barrare NV per risposta non valida (2 risposte o risposta incomprensibile) e non barrare nulla in caso di risposta omessa 
(ATTENZIONE Non spillare, non modificare per nessun motivo i dati precompilati della scheda)�
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